
Application of Computer Assisted Bimolecular Interaction Modelling
in Predictive Microbiology, Current State and Future Prospects

Saikat Bandyopadhyay 1, Lopamudra Ray 1&2*

1 School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India-751024, India
2 School of Law, KIIT University, Bhubaneswar, Odisha, India-751024, India

Abstract: With the rapid evolution of Biotechnology and Green Technology, Microbial synthesis of
commercially relevant biological compounds has been emerging for the past few decades. These economically
valuable bio-compounds that have numerous applications to food, agriculture, chemical, and pharmaceutical
industries. These low yield high-value products include several antibacterial and anticancer drugs, organic
acids, amino acids, vitamins, industrial chemicals, and even biofuels. Biological synthesis of these extremely
complex products often employs complex biochemical pathways performed under controlled culture
environments, exploiting live cells; Often followed by appropriate downstream extraction and purification
unit operations depending upon the nature and type of the product. In the last few decades, the latest innovations
enabling constant improvement of nucleotide sequencing and computational methods for downstream analysis
of sequence data have attracted a great number of biologists, mathematicians, and programmers across the
world, in form of a tool potentially capable of drawing important biological conclusions. The introduction of
these novel approaches has greatly contributed to the abundance of publicly available sequence data and
analytical algorithms through a plentiful and ever-increasing number of studies turning towards the big data
approaches. The inception of ‘Multiomics’ gave birth to in silco methods for identification of vital bimolecular
interactions accountable for major phenotypes including those which account for, biosynthesis of several
expensive bio-compounds. Most unpretentious application of these constraint-based models is to prioritize
target pathways for “knock-in” or “knock out” approaches, and also to identify important pathways that are to
be built into industrially relevant production organism(s) in synthetic biology. However, a more fanciful
application of this mechanistic predictions could be drawing an inference about the environment in which the
organism is living or was grown to express a certain physiological state. However, multiple major questions
need to be addressed before one starts predicting optimal culture conditions using Omics level information.
Here we focus on the major technological and scientific concepts that make up the core of, major scientific
questions that need to be answered to improve the predictive power of such technologies, future prospects,
and challenges associated with such integrative technology and their potential effect on the global economy.

Introduction
Before the insurgence of genomics, strain de-

velopment, strain improvement and optimization
of culture condition variables were generally sus-
tained through random chemical mutagenesis fol-
lowed by resource-intensive screening, followed
by selection procedures. Later, in the 1980s, the
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introduction of Recombinant DNA technology
gave birth to ‘‘Industrial Biotechnology’. In these
early days of Genetic engineering methods for
sustainable production of antibiotics (Penicillin
from Penicillium chrysogenum; annual market
size surpassing US$ 1.5 billion), vitamins (L-
ascorbic acid production through the ‘Reichstein
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process’ and biocatalysis employing Glucono-
bacter oxydans; annual market size exceeding
US$ 600 million), organic acids (citric acid pro-
duction by Aspergillus sp.; annual market size
exceeding US$ 1.5 billion), and amino acids (L-
glutamate and L-lysine production by Corynebac-
terium glutamicum; annual production exceeding
600,000 tons) were the primary focus 1. Since the
beginning of industrial microbiology, Yeast (Sac-
charomyces cerevisiae) was the most commonly
used microbial cell factory for industrial applica-
tions and many of the modern methods are equally
inclined towards using yeast, as it is well studied
under several controlled environments. Over the
last few decades, Yeast has been used to produce
alcohol, yoghurt, Insulin, Bioethanol, Vitamins
and even Amino acid. Thus yeast-derived prod-
uct is generally accepted easily in the global mar-
ket.

In the earliest days Industrial Biotechnology,
process designing was solely dependent on the
concepts of bioprocess engineering to enhance
production-yield and robustness. However, opti-
mization of the process variables for attaining
commercial feasibility consumed a large amount
of time and resources affecting the overall cost of
the product. The mechanistic association between
genotype, physiological traits and environmental
parameters were often beyond the scope of these
methods. In the meantime, vast applications of
these classical techniques, improvement of the
tools in ‘Molecular Biology’ especially DNA se-
quencing and Gene editing paved the path for rela-
tively newer concepts and technologies for site-
directed mutagenesis and delivered biologist the
scopes of metabolic engineering by direct alter-
ation of the gene sequence or gene-modules.
These methods were largely associated with the
production of, 1,3-propanediol 2, Isobutanol 3,
Succinic 4, 1,4-butanediol 5, Artemisinin 6, and
Omega-3 Eicosapentaenoic acid 7. Despite all of
these successful examples, efficient metabolic
engineering was still limited by the complexity
of cellular metabolism and the associated regula-
tory networks. Moreover, the synthesis of exog-
enous and non-natural compounds requires het-
erologous expression of novel genes and pathways
8 which often lead to metabolic competition and
metabolic imbalance and possibly 9. An aspect of

substrate utilization diversity often also needs to
be considered for the commercial utilization of
cell factories.

These challenges drove biologists towards the
need for holistic approaches for acquiring knowl-
edge about the mechanistic principles that gov-
ern the physiological properties, that laid the foun-
dation of Systems biology and Synthetic biology
10. Contrary to the conventional methods, System
biology deals with the totality of a system and
focuses on elucidating the interactions between
each constitutive components to predict cellular
behaviour. These methods are often driven by the
High-Throughput technologies and computational
methods 11,12. With the rapid decrease in the cost
of ‘per-base’ sequence, High throughput tech-
niques (i.e. genomics, epigenomics and
transcriptomics) has promoted mathematical mod-
elling to help biological science attain an unprec-
edented mechanistic resolution and identification
of causal associations 13. Since then, the evolu-
tion of the ‘Industrial systems biology’ has con-
tinuously fuelled big data-driven integration of
experimental and computational methods. These
modern methods aim to predict growth kinetics
and the phenotypical behaviours of microorgan-
isms by mapping genotype to the protein-protein
interaction (PPI) network. A directed graph is
generated where each node in the graph repre-
sent proteins and edges represent interactions be-
tween the proteins and small molecules identifies
the EC numbers and metabolic reactions from
relevant databases, formally known as Genome-
Scale Metabolic model. These models are pecu-
liarly valuable for decoding mechanisms under-
lying improved phenotypes in strains derived
through mutagenesis and screening or adaptive
laboratory evolution 14. As these methods allow
integration of multiple High Throughput Omics
(HTO) techniques 15 that enables prediction of
biological events. Synthetic biology is fundamen-
tally driven by these predictive algorithms. With
the arrival of Synthetic Biology, biologists today
have also gained the privilege of reconfiguring
the existing operational systems. With the ever-
increasing number of concrete evidences where
methods include Big data-driven engineering,
minimize the resource-consuming experiment-
driven hypothesis generation. The unprecedented
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predictive power promotes designing of interac-
tions between macromolecules, signalling in the
regulatory networks, and the metabolic networks.
However, these advanced techniques 16 are often
capable of producing unexpected outcomes to be
studied through experimental methods. Hence,
Synthetic biology has its own excitement. Never
the less, growing ethical issues and the global
governance of synthetic biology is a growing con-
cern. With the advancement of synthetic biology,
the need for establishing accountability external
to the system along with the fragmentation of so-
cial authority is also a pressing issue 17.

A more challenging application of these pre-
dictive models could also be a prediction of opti-
mal growth condition for an organism in ques-
tion. One could easily predict the optimal growth
condition cell factories with specific genetic ca-
pabilities, therefore reducing the number of ex-
perimental evaluation. These predictive methods
could also complement Game theory model and
Lotka Volterra model for community analysis.
Current microbial community modelling often
fails to establish a comprehensive correlation be-
tween genetics and community features, this is-
sue can potentially be addressed through the in-
tegration of Multiomics. These Big data-driven
methods are also likely to be useful where novel
wild-type organisms are to be used in a commer-
cial process (Bio-fertilizer industry/
Bioremediation/synthetic community designing
etc.). However, several questions need to be ad-
dressed before we develop efficient mathemati-
cal models for such predictions.

Through this review, we aim to outline major
concepts and current application of Multiomics
driven metabolic models in ‘Industrial Systems
Biology’. We also aim to draw attention towards
a few other potential areas of microbiological re-
search where system-wide metabolic modelling
could significantly improve current understand-
ing. Finally, we move on to point out how Pre-
dictive microbiology could impact the global
economy.

Prediction of biological capabilities using ge-
nome-scale models of metabolism (GEM)

Prediction of biological capabilities of an or-

ganism in the bottom-up approach of systems bi-
ology is vastly dependent upon the reconstruc-
tion of the ‘Reactome’. A Reactome is an assem-
bly of the biochemical reactions that are supported
by the organism’s genetic content. This assembly
in principle is very similar to the whole-genome
assembly from Shotgun sequencing data, how-
ever, in a typical Reactome reconstruction differ-
ent levels of biological information are incorpo-
rated in a directed graph to visualize and map each
reaction. These reactions infer to biological ca-
pabilities. There are several tools (i.e. KEGG,
MetaCyc, REAVEN Toolbox etc.) which aim to
automate the reconstruction process. Earlier re-
construction was mostly dependent upon manual
curation, a challenging task that requires advanced
knowledge of computational techniques along
with expertise in biological systems to identify
interacting compounds, reactions acting on each
compound and finally the protein (enzymes) that
catalyses these reactions along with their corre-
sponding open reading frames. To avoid the
manual curation modern automatic reconstruction
methods often utilize a globally curated database
as a template for the reconstruction. Finally, both
the automate or manual reconstruction generates
a directed graph representing the bimolecular in-
teraction network. This network facilitates math-
ematical modelling and thus enable computational
analysis to predict the mechanistic basis of bio-
logical capabilities. In the automated process,
Shotgun Whole Genome Sequencing (WGS) usu-
ally serves as the starting point for Genome-Scale
metabolic reconstruction. Next, the genes present
in the organism (system) are easily be predicted
using available gene prediction algorithms. These
gene prediction methods often employ sequence
similarly search, GC-content matching using the
available databases. A few machine learning-
based method also exits alongside the conven-
tional approaches. However, all of these gene pre-
diction algorithms produce output of the Enzyme
Commission Numbers. The biochemical/kinetic
information about these reactions and associated
bio-compounds are then established using the bio-
chemical knowledge base (otherwise known as
the ‘Bibliome’). With the increasing popularity
of genomics, GEMs has grown to enable biologi-
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Serial no. Biological questions to be answered for thereconstruction of a Reactome.

1 What are the substrates and products involved in a particular reaction?
2 How to quantify the stoichiometric coefficients for metabolites that participates in a

reaction(s)?
3 Are the reactions in question are reversible or not?
4 In what cellular compartment does a particular reaction occur?
5 What are the key gene(s) that are required for a particular reaction to occur, and how to

identify their genomic locations?

cal science to attain predictive attribute where
Constraint-based metabolic reconstruction proved
to be a major force. Principally, the reconstruc-
tion process fundamentally treats each reaction
as the basic elements of the network and then aims
to answer basic biological questions about each
reaction by combining information from multiple
sources (i.e. databases and primary literature).
These associations articulate the gene-protein-re-
action relationship (GPR) and organize reactions
in different compartments of the cell in a format
of organised subsystems 18. Nevertheless, before
computing the network properties from these to-
pological models, a crucial step is the conversion
of topology into a mathematically quantifiable
format.

Mathematical representation of GEM(s) enables
computational prediction of physiological states:
The mathematical representation of GEM is a
tabular format commonly known as the ‘Stoichio-
metric Matrix’. The paradigm of Fluxomics is
based on the fundamental aspects of stoichiom-
etry. Fluxomics studies flux maps/flux-distribu-
tions (imposition of systemic constraints on the
possible flow patterns of metabolites through a
metabolic network). Knowledge-driven imposi-
tion of these constraints upon the metabolic net-
work (COBRA approach), primarily differentiates
this Genomics-driven approach from the biophysi-
cal approach driven by measurement of kinetics
in the system. The mathematical constraints are
equations represent balances or imposed restric-
tions. The constraints are often based on funda-
mental biological knowledge. The stoichiomet-
ric matrix, on the other hand, imposes constraints
on the flux-distribution. This matrix ensures the
steady-state equilibrium of the system, where the
aggregate amount of any compound being pro-
duced is equal to the total amount being con-

sumed. The flux distribution of every reaction in
the matrix may also have an upper and lower
bound that define the maximum and minimum
allowable fluxes, which consecutively links the
turnover number (abundance) of enzymes to the
constructed Reactome. All these factors interac-
tively define a space of allowable flux distribu-
tions that reflects rates of consumption or pro-
duction for each metabolite. The flux vector aims
to quantify the state of the network to infer the
physiological property like uptake rates and se-
cretion rates 19. Computed network states that are
coherent across all the enforced constraints are
isolated as candidate physiological state. These
candidate physiological states serve as the basis
of constraint-based predictions.

The oldest known COBRA method, the Flux
Balance Analysis (FBA) is an approach that pre-
dicts the flow of metabolites in the Reactome 20.
In a typical FBA, several different network states
are possible under the given constraints, that sat-
isfy the governing equations. The solutions are
originated using linear programming. However,
these methods are only useful if the optimal solu-
tion lies at the boundaries of the solution space
impinging up against governing constraints. The
function of FBA utilizes the nutrient availability
data to precondition the output metabolite and
enables in silico tracing of balanced paths across
the directed graph of the Reactome. The traced
reactions are often correlated with objective func-
tions that describes the removal of the target me-
tabolite from the network, never the less this ap-
proach is one of the many approaches of all the
molecules flowing and interacting through the
reactome.

While simulating bacterial metabolism, GEMs
account for both the environmental and genetic
parameters. The environmental parameters can be
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altered by introducing changes in the growth
media. On the other hand, as GEMs are essen-
tially assembled bibliomic data, thus any number
of genes and reactions can easily be removed from
the Reactome, which in turn makes GEM(s)
favourable for identification of knock-out/knock-
in candidate reactions/genes. Together, the as-
sumption of steady-state for the internal metabo-
lite, the stoichiometry, and reversibility of each
reaction, allow articulation of a region for the al-
lowed flux distributions. The steady-state assump-
tion and stoichiometric model-based quantitation
and prediction of growth phenotype and has also
been applied to multiple facets of industrial syn-
thetic biology. Famous applications even include-
(1) estimation of the optimal state for growth un-
der different cultivation conditions 21, (2) maxi-
mization of ATP or NADH production 22, (3) Op-
timization and evaluation of industrial processes
for the production of high-value target metabo-
lites 23, (4) prediction of global quantitative rela-
tionships between the input rates of nutrients, the
output rates of by-products and growth rates 24.

Computational frameworks for analysis and
functional prediction with GEM

Although FBA by far is the most popular
method for GEM analysis and predictions, sev-
eral other sophisticated computational frame-
works exits that aim to identify candidate genes
or pathways for metabolic engineering using ge-
nome-scale models. These methods aim to explore
the metabolic potential of a given microbial cell
factory. Implementation of these algorithms are
often achieved using (1) Linear programming; (2)
Quadratic programming; (3) Mixed Integer lin-
ear programming; and (4) Evolutionary program-
ming.

FBA; Flux Variability Analysis (FVA); and Flux
Coupling Analysis (FCA) are all based on linear
programming. FVA ranks the possibilities of varia-
tion in each reaction rate when the environmen-
tal factors are altered. On the other hand, FCA
utilizes thermodynamic modelling that elucidates
the correlation between different reaction rates to
enable FBA with molecular crowding. A quadratic
programming (QP) based method for Minimiza-
tion of Metabolic Adjustment (MOMA) identi-

fies unique flux distributions that are the closest
to the observed flux distribution in a wild-type
strain. MOMA assumes that metabolic opera-
tions in a knockout mutant or engineered cell
are very similar to the wild-type strain and for
this reason, MOMA often outperforms the con-
ventional FBA 25.

Metabolic engineering often also includes the
optimization of the process to attain sustainability.
A widespread computational framework to
achieve optimization of the product yields often
aim to integrate the production of the craved prod-
uct to the growth kinetics. OptKnock, a bi-level
optimization framework aims to identify optimal
gene knockout strategies to attain phenotypes with
higher production capability for the desired me-
tabolite 26,27. Other similar algorithms such as
OptReg 28, OptStrain 29, OMNI (optimal metabolic
network identification) 30,31, and regulatory on/off
minimization (ROOM) 32 has increased the pre-
dictive capacity of metabolic modelling by quite
a fold. OptReg combines glucose uptake rate,
minimum ATP production and 13C experimental
flux data and to determine flux distributions in
the wild-type strain and finally uses a bi-level
optimization algorithm that finds deletion targets.
This method can also be used for successful iden-
tification of over-expression and down-regulation
targets. OptStrain uses a collection of databases
to guide the addition of non-native reactions to
the wild-type strain that, maximize the yield of
the desired product. On the other OMNI identi-
fies the bottleneck reactions that cause the dis-
crepancies between the experimental and mea-
sured fluxes. Finally, MOMA and ROOM aims
to determine putative flux distributions after gene
deletions by minimizing the number of signifi-
cant flux changes 33,34.

The evolutionary algorithm OptGene identifies
deletion targets in microorganisms at lower com-
putational costs by limiting the number of solu-
tions to be found using simulated annealing (SA)
35 and Set-based Evolutionary Algorithms (SEA)
36. Nevertheless, each of the mentioned algorithms
has its own sets of advantages as well as limita-
tions. Thus, choosing the right tool often depends
upon for specific application. Detailed descrip-
tion of the constraint-based prediction alongside
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the relevant methods can be found in the review
by Park et al. 37.

Current applications of GEMs
With the recent advent of computational biol-

ogy, manually curated high-quality GEM(s) of
many model organisms and other well-known
organisms are already complete. These recon-
structions are often publically available and of-
ten serve as a scaffold for automated recognition.
However, construction of GEMS for novel organ-
isms are often limited by the lack of relevant ex-
perimental data and particularly absenteeism of
large-scale physiological and omics data. High
quality published GEMs of E. coli and S. cerevi-
sae, have already been utilized in a broad range
of applications. Over the last decade including
the production of small molecules, metabolites,
antibiotics, and even bioethanol. A major study
in 2016 involving on E. coli GEM (iJO1366) 38,
predicted the biological capability of E. coli for
industrial production of 279 non-native chemi-
cals. On the other hand, the recent interest in
GEMs of well-known specific chemical produc-
ers Clostridium aceto-butylicum and Streptomy-
ces coelicolor has generated several high quality
qurated GEM(s) for industrial application. The
updated GEM of C. acetobutylicum (iCac967) 39,
Streptomyces and other actinomycetes strains
possess large industrial interest due to their capa-
bilities of secondary metabolites production,
which resulted in a comprehensive S. coelicolor
A3(2) GEM, and the algorithm FSEOF (flux scan-
ning based on enforced objective flux) that was
successfully used for commercial to overproduce
actinorhodin. Other manually curated GEM of
actinomycetes include GEM of Actinoplanes sp.
SE50/110 40, Salinispora tropica 41 and Saccharo-
polyspora spinosa 42. These GEMs are particu-
larly popular for their application in the antibi-
otic industry. Available GEMs of Chlamydomo-
nas reinhardtii 43 and Phaeodactylum tricornutum
44, and Synechococcus sp. PCC 207002 45 and
Synecho-cystis sp. PCC 6803 46 is a point of ma-
jor recent for elucidating electron flows during
photosynthesis. These GEMs have contributed
greatly towards several biological discoveries al-
lowing mechanistic knowledge base 47.

Community-wide metabolic modelling and
functional associations

With rapid developments in both metabolic
modelling resources and sequencing technologies
modelling of microbial communities that involve
either natural 48 or artificial metabolic interaction
49 has rapidly gained massive popularity in ap-
plied microbiology. Automatic metabolic model-
ling tools have largely promoted reconstruction
of the GEMs for pan-genome analyses, which in
turn paved the path for modelling cross-feeding
interactions arising in a complex microbial com-
munity (i.e. human gut microbiome, marine
microbiome, earth microbiome etc). Sophisticated
computational frameworks that aim to articulate
the dynamic interspecies interactions in the com-
plex microbial communities. These methods aim
to quantify levels of metabolites exchange within
the community as a function of biomass.

A popular resource for community-wide meta-
bolic modelling?

The CASINO (Community and Systems-level
Interactive Optimization) was recently used to
characterize interactions between gut microbiota
and the effects of human diets on cross-feeding
interactions 50. A similar multi-level objective
function optimization method, d-OptCom addi-
tionally includes kinetic parameters for identify-
ing nutrient uptake. This method predicts concen-
trations of community members’, biomass and
concentration of shared metabolites over time.
This method was used to model metabolic reac-
tions in a uranium-reducing community consist-
ing of Geobacter sulfurreducens, Rhodoferax
ferrireducens, and Shewanella oneidensis 51.
These two methods serve as the basis for Dynamic
FBA. Over the time many similar methods have
been developed, nevertheless, modern methods
introduce additional (differential) equations to op-
timize model parameters. Optimized model pa-
rameters often enhance the predictive capacity
when studding specific aspects of microbial com-
munity. Additionally, FVA & FCA is often used
to predict co-culturing dependent exclusive se-
cretion events. A novel method, COMETS (Com-
putation of Microbial Ecosystems in Time and
Space) employs additional diffusion equations
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along with the Dynamic FBA. The diffusion equa-
tions enable conceptualization of species ratios
and spatial configuration of the community mem-
bers. Finally, a similar method MCM (Microbial
Community Modeler) predicts the dynamics of
relative cell densities and pathway activities of
community members. In spite of this massive
development in computational methods, efficient
prediction through these algorithms is limited to
smaller communities consisting of relatively well-
studied community members. To elaborate on the
reconstruction and use of community-wide meta-
bolic interactions, integrated omics data holds
great potential towards a better understanding of
metabolic interactions among more diverse com-
munity members. Gene-identification driven
implementation of evolutionary game theory and
Lotka Volterra model assists to understand the
evolutionary rise of metabolic interdependencies
and functional evolution in microbial communi-
ties 52.

Challenges and future prospects
While the community-scale metabolic model-

ling continues to gain massive popularity, sev-
eral major computational and experimental chal-
lenges need to be overcome to attain accuracy in
predicting qualitative and quantitative behaviours
of a microbial community. The primary challenge
in this regard is a lack of experimental inter- and
interspecies flux measurements, secondly, mea-
surement of analogous co-culture flux measure-
ments is often quite difficult to acquire. Also, the
scope of studding extracellular flux of individual
strain and cross-feeding reactions associated with
a community member is often limited, as metabo-
lites are often simultaneously produced and con-
sumed by multiple community members. With the
recent advances in carbon-13 labelling, modern
experimental methods have been able to resolve
intracellular fluxes in two-species communities
53. This technique can be improved to elucidate
flux distributions among genetically diverse com-
munity members.

Another major challenge in this area is build-
ing metabolic models from metagenomics DNA
sequence, as current methods of community pro-
filing lack species-level resolution, thus metabolic

genes predicted through the shotgun
metagenomics approach lacks details on which
community members these genes belong to, mak-
ing compartmentalization of these metabolic re-
actions specifically difficult. Also, the transporter
mechanisms predicted based on sequence infor-
mation, fail to resolve, which specific metabo-
lites are being taken up or excreted by these trans-
porters. Therefore, improved transporter annota-
tion and their data-based characterization will
potentially amend the anticipations of nutrient
uptake, product secretion and metabolite ex-
change in microbial communities.

The spatial configuration of community mem-
bers is often beyond the scope of current
microbiome modelling; however spatial chemi-
cal gradients are a common feature of microbial
communities where agitation is absent. Moreover,
the cellular behaviour depends largely on chemi-
cal concentration in the local environment. Thus,
future microbiome models should also include
accesses for predicting concentration gradients in
response to flow, diffusion, and microbial metabo-
lism.

A major application of the constraint-based
modelling of bio-chemical interactions is to study
a various range of organisms and microbial com-
munities, including synthetic and natural commu-
nities associated with the ocean, marine, and hu-
man environments. These models can be further
used for designing efficient microbial consortium
to be used in bio-fertilizer and bioremediation.
Mathematical constrains can also be used to iden-
tify underlying mechanisms behind antibiotic re-
sistance and pathogenicity.

Today large scale studies of flux distribution
also include the integration of proteomic/
transcriptomic data into the metabolic network
using parsimonious flux balance analysis (pFBA)
and most recently Linear Bound Flux Balance
Analysis (LBFBA) 54 also transcriptional regu-
lated flux balance analysis (TRFBA) 55 algorithm
enables integration of transcriptional regulatory
and metabolic models using a set of expression
data. This method introduces two new linear con-
straints by considering the expression levels of
genes as a new continuous variable. The first con-
strain limits the rate of a particular reaction and
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