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Abstract: Three-dimensional quantitative structure-activity relationship (3D-QSAR), pharmacophore
studies and docking studies was performed on a series of 4-Quinolones derivatives as antitumor agent and
structure activity correlation was established. Subsequent ADME studies disclosed the pharmacokinetic
efficiency of these compounds. 3D-QSAR models were generated using a set of 43 compounds of 4-Quinolones
derivatives as inhibitor of tubulin polymerization for antitumor activity. Five-point common pharmacophore
hypotheses were chosen for alignment of all compounds. The 3D-QSAR models generated using training set
(31 compounds) and test set (12 compounds) exhibited good partial least squares statistical results. The developed
common pharmacophore hypothesis (CPHs) and 3D-QSAR models were validated further externally by
predicting the activity of database of compounds and comparing it with actual activity. We have selected the
3D-QSAR models generated by CPHs AADRR.11 for correlating the structure with activity. Docking studies
were also performed for all compounds on colchicine binding site of β tubulin for examine the binding affinity
of compounds for antitumor activity. ADME properties studies predict both physiochemically noteworthy
descriptors and pharmacokinetically relevant properties extremely useful in the context of both high-throughput
library screening and lead optimization. The results of these molecular modeling studies are helpful to improve
the pharmacophore for design of novel potential compounds for antitumor activity.

Key words: 3D-QSAR, Pharmacophore, Combretastatin A-4, 4-Quinolones, Common
Pharmacophore Hypothesis.

Introduction
Microtubules are involved in a wide number

of cellular functions, such as division, motility,
intracellular transport and shape maintenance.
The major protein component found in micro-
tubules is tubulin. Interference with microtubule

assembly, either by inhibition of tubulin poly-
merization or by blocking microtubule
disassembly, leads to an increase in the number
of cells in Metaphase arrest. Inhibition of
microtubule function using tubulin targeting
agents is a validated approach to anticancer
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therapy 1-5. A series of 4-Quinolones as a new class
of antimitotic antitumor agents are potent tubulin
assembly inhibitors that bind to the colchicine
site on β tubulin close to its interface with α
tubulin within the α,β dimer. 4-Quinolones
efficiently inhibit tubulin polymerization and
cancer cell growth, with activities comparable
with those of colchicine and Combretastatin A-4
(CA-4) 6.

CA-4 (Fig. 1) is a low molecular weight natural
product that binds to the colchicine site of tubulin.
Combretastatins are mitotic agents isolated from
the bark of the South African tree Combretum
caffrum 7-9. The most potent combretastatin A-4
(CA-4) [20, cis-1-(3,4,5-trimethoxyphenyl)-2-
(3’-hydroxyl-4’-methoxyphenyl)ethane] is a
simple stilbene that has been shown to compete
with colchicines for binding sites on tubulin. It
has been found to be a potent cytotoxic agent,
which strongly inhibits the polymerization of
tubulin by binding to the colchicine site. CA-4
was described as a strong cell growth and tubulin
inhibitor 10. CA-4 is thus an attractive lead
molecule for the development of anticancer drugs
11-13. CA-4 Phosphate (CA-4-P) and ombrabulin
(Fig. 1) are currently being investigated in a
number of clinical trials. Ombrabulin was granted
orphan drug status by the European Medicines
Agency in April 2011.

In search of novel targets using computational
studies, we present here the correlation of
structures of 4-Quinolones (Fig. 1) derivatives
with inhibition of tubulin polymerization (ITP).
In order to optimize this pharmacophore and for
further improving the activity, we developed atom
based 3D-QSAR models using pharmacophore
align-ment and scoring engine (PHASE),
performed docking study on colchicines binding
site of β tubulin using grid based ligand docking

with energetics (GLIDE) and predict ADME
characteristics by using Qikprop. PHASE is a
comprehensive, self contained system for
pharmacophore perception, QSAR model
development, and 3D database screening 14. The
GLIDE docking module approximated a complete
systematic search of the conformational,
orientation and positional space of the docked
ligand molecules into the receptor-binding pocket
15. Qikprop is a tool to predict ADME properties.
It predicts both physiochemically important
descriptors and pharmacokinetically applicable
properties tremendously useful in the perspective
of high-throughput library screening and lead
optimization.

The developed atom based 3D-QSAR model,
docking studies emphasizes the structural features
of 4-Quinolones analogous of CA-4 for binding
to colchicines binding site of β tubulin and
ADME studies indicated the pharmacokinetic
efficiency of these compounds which might be
beneficial for further design of more potent
tubulin binding agent with pharmacokinetic
competence.

Materials and methods
Biological data

A set of 43 dataset of 4-Quinolones derivative
(Table 1a, 1b, 1c) with available IC

50
 (μM) data

for cytotoxic activity against ITP were taken from
literature 6 for the development of ligand based
CPHs. The IC

50
 values (in moles/liter) was

converted into negative logarithm of IC
50 

(pIC
50

)
was used in this study. For 3D-QSAR studies,
these 43 com-pounds were divided into a training
set (31 compounds) and a test set (12
compounds). The training set molecules were
selected randomly in such a way that they
contained information in  redundant

Fig.1 Chemical Structure of CA-4 and Ombrabulin
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Table 1a. Structure of 2’,3’,4’,5’,6,7-Substituted 2-Phenyl-4-quinolones
used for development of common pharmacophore hypothesis and

3D-QSAR studies along with biological activity

Comp. R
2'

R
3'

R
4'

R
5'

R
6

R
7

ITP IC
50

 (μμμμμM)

1 H H H H OCH
2
O 0.63

2 H H OCH
3

H OCH
2
O 40

3 H OCH
3

H H OCH
2
O 0.57

4 OCH
3

H H H OCH
2
O 14

5 H OPh H H OCH
2
O 40

6 H H N(CH3)2 H OCH
2
O 40

7 H N(CH3)2 H H OCH
2
O 0.7

8 H H CH
3

H OCH
2
O 1.0

9 H OCH
3

OCH
3

H OCH
2
O 40

10 H OCH
3

H OCH
3

OCH
2
O 0.62

11 OCH
3

H OCH
3

H OCH
2
O 40

12 OCH
3

H H OCH
3

OCH
2
O 5.5

13 H OCH
2
O H OCH

2
O 1.1

14 H OCH
3

OCH
3

OCH
3

OCH
2
O 40

15 OCH
3

OCH
3

OCH
3

H OCH
2
O 40

16 F H H H OCH
2
O 0.85

17 Cl H H H OCH
2
O 0.89

18 H N(CH
3
)

2
H H H H 1.5

19 H H N(CH
3
)

2
H H H 40

20 H OCH
3

H H H H 1.4
21 H OCH

3
OCH

3
OCH

3
H H 40

22 H H H H OCH
3

OCH
3

18
23 H N(CH

3
)

2
H H OCH

3
OCH

3
15

24 H OCH
3

H H OCH
3

OCH
3

4.3
25 H OCH

3
OCH

3
H OCH

3
OCH

3
40

26 H H OCH
3

H OCH
3

H 40
27 H H OH H OCH

3
H 5.6

28 H H OCH
3

H H H 40
29 H H OCH

3
H H F 40

30 H N(CH
3
)

2
H H OCH

3
H 0.84

31 H OCH
3

H H OCH
3

H 0.74

terms of both their structural features and
biological activity ranges.

The most active molecules, moderately active,
and less active molecules were included in
training set to spread out the range of activities.

In order to assess the predictive power of the
model, a set of 12 compounds was arbitrarily set
aside as the test set. The test compounds were
selected in such a way that they truly represent
the training set.
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Table 1b. Structure of 5,6,7-Substituted 2-Heterocyclic 4-Quinolones and a
Related Styryl Derivative used for development of common pharmacophore

hypothesis  and 3D-QSAR studies along with biological activity

Comp. R’ R5 R6 R7 ITP IC
50

 (μμμμμM)

32 H OCH
2
O 18

33 H OCH
2
O 23

34 H OCH
2
O 2.2

35 H OCH
2
O 1.3

36 H H F 40

37 F H H 40

38 H OCH
3

H 40

39 H Cl H 40

40 H OCH
2
O 2.3

Ligand preparation
The structure of each compounds were cleaned

and optimized using Ligprep v2.6 (Schrodinger,
LLC, New York, NY, 2012). The cleanup and
optimization process include conversion of
structures from 2D to 3D, addition of hydrogen
atoms, removal of counter ions, ionization state
at the pH 7.0, generation of stereoisomer’s,

removal of noncompliant structures, and energy
minimization. Conforms of all ligands were
generated using conformer generation macro-
model search method 16 with maximum number
of conformers 1,000 per structure and
minimization steps 100 and minimized using
OPLS_2005 force field 17 each minimized
conformer was further filtered to eliminate
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conformations. For each molecule, a set of
conformers with maximum energy difference of
10 kcal/mol relative to global energy minimum
conformers were retained. The conformer
generation studies are based on methods i.e.,
torsion sampling or mixed Monte-Carlo Multiple
Minimum (MCMM)/Low Mode (LMOD), where
the minimized structures are finally obtained
through a filter using defined relative energy
window, typically of 10 kcal/mol. Also,
conformers with the RMSD of lower than 1.0 A°
between all pairs of corresponding heavy atoms
were considered identical and rejected.

Pharmacophore modeling
Pharmacophore modeling and 3-D database

searching are now recognized as integral
components of lead discovery and lead optimi-
zation. The continuing need for improved
pharmacophore based tools has driven the
development of ‘PHASE’v3.4 (Schrodinger,
LLC, New York, NY, 2012). To reach our research
objectives we have used ‘PHASE’: a module of
Schrodinger’s drug design software.

Generation of the common pharmacophore
hypotheses (CPHs)

The CPHs was carried out by PHASE 14.
Pharmacophore features; hydrogen bond acceptor
(A), hydrogen bond donor (D), hydrophobic
group (H), negatively charged group (N),
positively charged group (P) and aromatic ring
(R) were defined by a set of chemical structure

patterns as SMARTS queries. Common pharma-
cophoric features were then identified from a set
of variants (set of feature types) that define a
possible pharmacophore using a tree-based
partitioning algorithm with maximum tree depth
of four with the requirement that all actives must
match. After applying default feature definitions
to each ligand, CPHs were generated using a final
box of 1 A°. All generated CPHs were examined
and selected based on a scoring function to yield
the best alignment of the active ligands using an
overall maximum root mean square deviation
(RMSD) value of 1.2 A° with default options for
distance tolerance. The quality of alignment was
measured by a survival score. Defined as:

S =W
site

S
site

 +W
vec

S
vec

 +W
vol

S
vol

+W
sel

S
sel

+Wm
rew

-
W

E
ΔE +W

act
A

where, W’s are weights and S’s are scores; S
site

represents alignment score, the RMSD in the site
point position; S

vec 
represents vector score, and

averages the cosine of the angles formed by
corresponding pairs of vector features in aligned
structures; S

vol
 represents volume score based on

overlap of vanderwaals models of non hydrogen
atoms in each pair of structures; and S

sel
 represents

selectivity score and accounts for what fraction
of molecules are likely to match the hypothesis
regardless of their activity towards the receptor.
W

site
, W

vec
, W

vol
 have default values of 1.0, while

W
sel

 has a default value of 0.0. In hypothesis
generation, default values have been used. The

Table 1c. Structure of 2’,3’-Fueed 6,7-(Methylenedioxy)-2-phenyl-4-quinolones
used for development of common pharmacophore hypothesis and

3D-QSAR studies along with biological activity

Compound n R ITP IC
50 

 (μμμμμM)

41 2 H 40
42 2 OCH

3
400

43 3 H 40
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reward comes in the form of Wm
rew

 where W
rew

 is
user-adjustable (1.0 by default) and m is the
number of actives that match the hypothesis
minus one. W

E
ΔE represents penalty included for

high energy structures by subtracting a multiple
of the relative energy from the final score and
penalize hypothesis for which the reference
ligand activity is lower than the highest activity,
by adding a multiple of the reference ligand
activity to the score represented by W

act
A, where

A is the activity. The CPHs with high survival
score were chosen for alignment of molecules and
used for further 3D-QSAR studies.

Building of 3D-QSAR models
An atom based 3D-QSAR model is more useful

in explaining the structure activity relationship
than pharmacophore based 3D-QSAR as latter
do not consider ligand features beyond the
pharmacophore model. In atom-based 3D-QSAR,
a molecule is treated as a set of overlapping
vanderwaals spheres. Each categories according
to a simple set of rules: hydrogens attached to
polar atoms are classified as hydrogen bond
donors (D); carbons, halogens, and C–H
hydrogens are classified as hydrophobic/non-
polar (H); atoms with an explicit negative ionic
charge are classified as negative ionic (N); atoms
with an explicit positive ionic charge are
classified as positive ionic (P); non ionic atoms
are classified as electron withdrawing (W); and
all other types of atoms are classified as
miscellaneous (X). For construction of atom
based 3D-QSAR model, a rectangular grid of
cubes (1 A° on each side) were defined for aligned
training set for occupation of all atoms. Each
occupied cubes were allotted one or more volume
bits to represent the molecules by string of zero
and ones. This representation gives rise to binary
valued occupation patterns that was used as
independent variables to create PLS QSAR
models 14. The PLS regression was carried out
with maximum of N/5 PLS factors, where N is
the number of ligands in training set.

Validation of pharmacophore model
Validation is a crucial aspect of pharmacophore

design, particularly when the model is built for

the purpose of predicting activities of molecules
in test series. In the present case, the developed
pharmacophore model was validated by
predicting the activity of test set molecules. The
correlation between the experimental and
predicted activities of the test set molecules was
determined. We accept models with Q2 values for
the training set greater than 0.5 and R2 values for
predicted versus actual activities of the test set
compounds greater than 0.6 18, 19.

Docking method
The molecular docking tool, Glide v5.8

(Schrodinger, LLC, New York, NY, 2012) was
used for docking studies of all compounds on
colchicines binding site of β tubulin. The crystal
structure of β tubulin was acquired from protein
data bank (PDB code: 1SA0) and was made ready
for docking using ‘‘protein preparation wizard’’
in Maestro wizard v9.3 (Schrodinger, LLC, New
York, NY, 2012). Water molecules in the crystal
structures were removed. The protein preparation
was performed in two steps, preparation and
refinement. In preparation phase, after confirming
chemical correctness, the hydrogen atoms were
added where hydrogen atoms were missing. Side
chains that are not close to the binding cavity and
do not contribute in salt bridges were neutralized.
In the refinement phase, a restrained impact
minimization of the co-crystallized complex was
carried out. This helps in reorientation of side
chain hydroxyl group. It utilizes the OPLS_2005
force field for this purpose. Grids were defined
by centering them on the ligand in the crystal
structure using the default box size.

The ligands were built using maestro build
panel and prepared by Ligprep which produces
the low energy conformer of ligands using
OPLS_2005 force field 16-17. The lower energy
conformations of the ligands were selected and
docked into the grid generated from protein
structures using Extra Precision (XP) docking
mode. Compounds were sorted on the basis of
docking score to furnish only those hits which
significantly interacted with the colchicine site
on β tubulin. Evaluation was done with glide
score (docking score) and the single best pose is
generated as the output for particular ligand.
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GScore is expressed as

Gscore = a x vdw + b x coul + Lipo + H – bond
+ Metal + BuryP + RotB + Site

where, vdW is Vander Waal energy, Coul is
Coulomb energy, Lipo is lipophilic contact term,
H-bond is hydrogen bonding term, Metal is metal
binding term, BuryP is the penalty for buried polar
groups, RotB is the penalty for freezing rotatable
bonds, Site is polar interactions at the active site,
and the Coefficients of vdW and Coul are a =
0.065, b = 0.130. Chem score and atom-atom pair
function assigns scores to lipophilic ligand atoms
based on summation over a pair function each
term of which depends on the interatomic
distance between a ligand atom and a neighboring
lipophilic protein atom 20-23.

ADME studies
ADME properties were calculated using

Qikprop v3.5 (Schrodinger, LLC, New York,
USA). It aid in calculating important physio-
chemical descriptors and appropriate pharma-
cokinetic properties useful in lead optimization
and high-throughput library screening. It also
evaluates the acceptability of analogs based on
the Lipinski rule of five, which is essential to
ensure drug-like pharmacokinetic profile while
using rational drug design 24, 25. All the analogs
were neutralized before being used by Qikprop.

Results and discussion
Generation of 3D-QSAR models

The active and inactive thresholds were set
as 6.00 and 4.5 respectively. The pharma-
cophoric features present for creating sites were
hydrogen bond acceptor (A), hydrogen bond
donor (D) and aromatic ring (R) hydrophobic
group (H). Different variant CPHs were generated
by common pharmacophore identification

process. The five featured pharmacophore hypo-
theses were high value of survival score, able to
define the complete binding space of the selected
molecules. Five featured pharmacophore hypo-
theses were selected and subjected to rigorous
scoring function. The two hypothesis
(AADRR.11 and AADRR.12) were employed for
the 3D-QSAR study and characterized by survival
score (Table 2).

All top CPHs (AADRR.11 and
AADRR.12) were used for atom-based 3D-
QSAR model generation. The good CPHs yielded
a 3D-QSAR model with good value of regression
coefficient, low standard deviation and high
variance ratio with good stability, good predictive
power, low RMSE value and high Pearson R
value which stands for correlation between
predicted and observed activity for test set. We
selected two dissimilar 3D-QSAR models
generated by CPHs, AADRR.11 and AADRR.12
for correlating the structure with activity.

The CPHs AADRR.11 and AADRR.12
produced 3D-QSAR models with good PLS
statistical values (Table 3). These hypotheses
exhibited good internal as well as external
predictive power. The training set correlation in
both CPHs is characterized by PLS factors R2 =
0.9341, SD = 0.1995, F = 92.1, P = 5.806e-015,
Q2 = 0.8687 for CPH AADRR.11, and R2 =
0.9366, SD = 0.1958, F = 95.9, P = 3.558e-015,
Q2 = 0.7595 for CPH AADRR.12. The test set
correlation is characterized by PLS factors R2

=0.64 (Fig. 2b), RMSE =0.3209, Pearson R =
0.9647 for CPH AADRR.11 and R2 =0.50, RMSE
=0.4343, Pearson R = 0.9502 for CPH
AADRR.12. We accept models with Q2 values
for the training set greater than 0.5 and R2 values
for predicted versus actual activities of the test
set compounds greater than 0.6 thus model
AADRR.11 was accepted and AADRR.12 was
rejected.

Table 2. Survival score of top five CPHs

S. No. CPHs Survival Site Vector Volume Inactive Survival-
Inactive

1 AADRR.11 3.779 0.98 0.932 0.871 2.541 1.238
2 AADRR.12 3.636 0.83 0.948 1.489 2.441 1.177

Vijay K. Patel et al. / BDDD 1 (1) 2014 pp 1 - 16 7



Fig. 2 Plot of phase activity versus predicted activity for 3
D-QSAR model generated using CPHs: CPHs: AADRR.11

(a) training set R2 =0.56 (b) test R2 =0.64

Table 3. Statistical results of 3D-QSAR model developed using different CPHs

S. No. Statistic parameters 3D- QSAR models
AADRR.11 AADRR.12

1 SD 0.1995 0.1958
2 R2 0.9341 0.9366
3 F 92.1 95.9
4 P 5.806e-015 3.558e-015
5 Stability 0.625 0.459
6 RMSE 0.3209 0.4343
7 Q2 0.8687 0.7595
8 Pearson 0.9647 0.9502
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The fitness scores for all ligands were examined
on the best scored pharmacophore model. The
greater the fitness score, the greater the activity
prediction of the compound. The fit function does
not only check if the feature is mapped or not, it
also contains a distance term, which determines
the distance that separates the feature on the
molecule from the centroid of the hypothesis
feature. Table 4 indicates the fitness score for all
the molecules of training set.

3-D QSAR analysis
The 3D-QSAR models developed using CPHs

AADRR.11 were applied to database of
compounds considered from literature (Li et al.,
1994) for validation purpose. The activity of these
reported compounds having 4-Quinolones or
similar pharmacophoric group were predicted and
compared with its actual activity (Table 4). The

residual values obtained by subtraction of pre-
dicted activity from reported activity was found
to be near zero for number of compounds. The
mean of residual was also calculated and found
as -1.538 for 3D-QSAR models associated with
CPHs AADRR.11. 3D-QSAR models based on
the molecules of training and test set using various
features, i.e., hydrogen bond donor, hydrogen
bond acceptors and hydrophobic group has been
studied. A pictorial representation of the cubes
generated in the present 3D-QSAR is shown in
Figs. 3, 4 and 5. In these generated cubes, the
blue cubes indicate favorable features, while red
cubes indicate unfavorable features for biological
activity. The antitumor activity can be achieved
by visualizing the 3D-QSAR model in the context
of one or more ligands in the series with changing
activity. This information can be employed to
design novel or more active analogues.

Table 4 Comparison of observed biological activity and
predicted activity along with fitness of compounds on CPHs

Comp. Actual pIC
50

3D QSAR model AADRR.11
Predicated pIC

50
Residue Fitness

1 6.201 5.71 0.491 3
2 4.398 4.67 -0.272 2.942566
3* 6.244 6.18 0.064 2.941994
4 4.854 4.99 -0.136 2.898265
5 4.398 4.58 -0.182 2.549533
6 4.398 4.72 -0.322 2.67143
7* 6.155 5.97 0.185 2.905997
8 6 5.9 0.1 2.730525
9* 4.398 5.11 -0.712 2.890907

10 6.208 6.22 -0.012 2.892853
11 4.398 4.38 0.018 2.853996
12 5.26 5.04 0.22 2.847262
13* 5.959 5.33 0.629 2.904051
14 4.398 4.54 -0.142 2.843708
15* 4.398 4.73 -0.332 2.813044
16 6.071 5.8 0.271 2.682186
17 6.051 6.14 -0.089 2.904037
18 5.824 5.72 0.104 2.360332
19* 4.398 4.63 -0.232 2.361123
20 5.854 5.95 -0.096 2.393619
21 4.398 4.38 0.018 0.900304
22* 4.745 4.83 -0.085 2.779701
23 4.824 4.98 -0.156 2.702959
24 5.367 5.24 0.127 2.730894
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Fig. 3. Pictorial representation of the cubes generated using the 3-D QSAR model based on
Comp. no. 1 of training set illustrating hydrogen bond donor feature CPHs: AAHRR.11. Blue
cubes indicate favorable regions, while red cubes indicate unfavorable region for the activity

         table 4. (continued).

Comp. Actual pIC
50

3D QSAR model AADRR.11
Predicated pIC

50
Residue Fitness

25 4.398 4.18 0.218 2.687596
26* 4.398 4.5 -0.102 2.725919
27 5.252 4.89 0.362 2.53596
28 4.398 4.25 0.148 2.420715
29 4.398 4.32 0.078 2.426789
30* 6.076 6.17 -0.094 2.572362
31 6.131 6.37 -0.239 2.601817
32 4.746 4.69 0.056 2.797742
33* 4.638 4.89 -0.252 2.775523
34 5.658 5.69 -0.032 2.872337
35 5.886 5.96 -0.074 2.427506
36 4.398 4.46 -0.062 2.267867
37* 4.398 4.48 -0.082 2.223549
38 4.398 4.48 -0.082 2.65038
39 4.398 4.3 0.098 2.263354
40 5.638 5.81 -0.172 2.349458
41 4.398 4.46 -0.062 2.884166
42* 3.398 3.94 -0.542 2.838445
43 4.398 4.56 -0.162 2.598389

* Compounds in test set
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Fig. 4. Pictorial representation of the cubes generated using the 3-D QSAR model based on
Comp. no. 1 of training set illustrating hydrophobic feature X CPHs: AADRR.11. Blue cubes

indicate favorable regions, while red cubes indicate unfavorable region for the activity

Fig. 5. Pictorial representation of the cubes generated using the 3-D QSAR model based on
Comp. no. 1 of training set illustrating hydrogen bond acceptor feature CPHs: AADRR.11. Blue

cubes indicate favorable regions, while red cubes indicate unfavorable region for the activity
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Hydrogen bond donor field predictions
The 3D-QSAR model based on Comp. no. 1 of

the training set using hydrogen bond donor
feature is shown in Fig. 3. CPHs AAHRR.11 blue
region near the R

4¢
 and D

4
 position hydrogen bond

donor property favors the antitumor activity so
hydrogen donor group at R

4¢ 
and D

4
 position

(NH
2
, CH

3
) will result in increase in anticancer

activity. CPHs red region around the R
2¢ 

group
and Nitrogen at Quinolones ring hydrogen bond
donor property not favors the antitumor activity.
So hydrogen donor group (NH

2
, CH

3
) at R

2¢ 
group

and Nitrogen at Quinolones ring will result in
decline in antitumor activity.

Hydrophobicity field prediction
The 3D-QSAR model based on Comp. no. 1 of

the training set using hydrophobicity feature is
shown in Fig. 4. CPHs AADRR.11 blue region
around R

4’
 and R

6’
 position hydrophobic group

favors cell line inhibitory activity and substi-
tutions at these positions by more hydrophobic
groups will result in increase in cell line inhibitory
activity. Red region around the, R

2’ 
R

5’
 and [1,3]

dioxolo [4,5g] quinolin 8(5H) one ring at oxygen
atom do not favor substitution hydrogen and
oxygen with hydrophobic group (CH

3
, C

2
H

5
) with

the cell line inhibitory activity.

Hydrogen bond acceptor field prediction
The 3D-QSAR model based on Comp. no. 1 of

the training set using hydrogen bond acceptor
feature is shown in Fig. 5. CPHs AADRR.11 blue

region at R
3’
 R

5’
 and [1,3] dioxolo [4,5g] quinolin

8(5H) one ring at 2 dioxolo (-CH
2
-) position,

having more hydrogen bond acceptor property
favors the antitumor activity. Replace-ment of this
group by any electron withdrawing group such
as Cl, F, Br, NO

2
, OCH

3
 etc will result in increase

in antitumor activity. Red region around R
2’
 and

R
4’

 do not favor the antitumor activity.
Replacement of this group by any electron
withdrawing group such as Cl, F, Br, NO

2
, OCH

3

etc will result in decline in antitumor activity.

Docking studies
Molecular modelling studies were performed

to investigate potential interactions for the 4-
Quinolones derivatives. The reported X-ray
structure of tubulin cocrystallized with a
colchicines derivative, N-deacetyl-N-(2
mercaptoacetyl) colchicine (DAMAcolchicine,
PDB entry 1SA0) was used for the docking study.
Molecular docking studies of parent compound
1 (Figs. 6(a) and 6(b)) predicted similar intera-
ctions to those previously reported to be of
importance for binding at the colchicine site,
including important interactions with Cys241 and
Val318. compounds are orientated in a similar
manner to DAMA-colchicine, with the 3,4,5-
trimethoxyaryl A ring and 4-methoxyaryl B ring
occupying the same position in the binding pocket
(Fig. 7).
ADME studies

Fig. 6. Docking of compounds on colchicine-binding site of â tubulin Pink dotted lines show
hydrogen binding with CYS 241 (a) Docking pose (XP) of Comp. 1 docked (b) 2D represen-

tation of the binding interactions of Comp. 1 with the colchicine binding site of tubulin
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Fig.7. Overlap of colchicines ligand and comp. 1 at binding site. Green color show
colchicines ligand and grey color show Comp. 1. The protein structure originated

from the X-ray study of its complex with DAMA-colchicine encoded as
1SA0 in PDB) tubulin is shown in a ribbon representation

Prediction of ADME parameters earlier to
experimental studies is one of the most imperative
features in the drug discovery and development
of drug molecules. 43 physical descriptors and
pharmaceutically pertinent properties of 4-
Quinolone series were analyzed using Qikprop,
among which important descriptors are presented
in Table 5. These descriptors are necessary for
predicting drug-like properties of molecules.
These properties were:
1. Molecular weight (mol MW) (180-500)
2. Octanol/water partition coefficient (log P o/

w) (-0.4 to +5.4)
3. Aqueous solubility (QPlog S) (-6 to 0.5)
4. Hydrogen bond donors (Not more than 5)
5. Hydrogen bond acceptors (Not more than 10)
6. Apparent MDCK cell permeability (QPPM-

DCK) (<25 poor)
7. Brain/blood partition coefficient (QPlogBB)

(-3.0 to 1.2) Percent human oral absorption
(>80 % is high, <25 % are poor)

The first five properties are based on Lipinski
rule of five, molecular weight (mol MW) and
partition coefficient between octanol, water
solubility, Hydrogen bond donor and acceptor.
Brain/blood partition coefficient (QlogBB)
parameter represents the ability of a drug to pass
through blood-brain barrier, whereas QPPMDCK
predicted apparent MDCK cell permeability in
nm/s. Higher the value of MDCK cell higher the
cell permeability.

The physical descriptors and pharmaceutically
pertinent properties of 4-Quinolone series were
analyzed using Qikprop. The outcomes are as
follows: Molecular weight (240 to 357), log P o/
w (2.039 to 4.139), QPlog S (-5.028 to -2.795),
Hydrogen bond donors (1 to 2), Hydrogen bond
acceptors (3.25 to 6.25), QPPMDCK ( 361.845
to 3237.059), QPlogBB (-0.696  to 0.144) and
Percent human oral absorption (92.377 to 100)
(Table 5). All the physical descriptors except
Apparent MDCK cell permeability (QPPMDCK;
it is more than 25 in all the compounds; it should
be lesser than 25) represent the promising values
for design of 4-quinolones based analogues for
potential tubulin polymerization inhibitory
activity.

Conclusion
The five feature 3D-QSAR models were

developed using variant CPHs which comprises
of acceptor, donors, and hydrophobic vector
characteristics. The correctness and capability of
both 3D-QSAR models were validated internally
by applying to test set and externally by predicting
the activity of compounds having 4-Quinolones
pharmacophore from literature. The one
predictive 3D-QSAR models was selected based
on statistical results. These 3D-QSAR models
impart an insight into the structural prerequisite
of 4-Quinolones analogs as tubulin inhibitor
agents for antitumor activity.
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Table 5. Qikprop studies with physical descriptors of 4-Quinolone derivative

Comp. mol MW QPlog QPlogS donor accpt QPPMDCK QPlog Percent Human
Po/w HB HB BB Oral Absorption

1 265.268 2.589 -3.264 1 4 1317.475 -0.029 100
2 295.294 2.685 -3.497 1 4.75 1317.213 -0.108 100
3 295.294 2.685 -3.482 1 4.75 1316.105 -0.106 100
4 295.294 2.732 -3.589 1 4.75 1286.377 -0.122 100
5 357.365 4.139 -5.028 1 4.5 1317.37 -0.215 100
6 308.336 3.01 -4.109 1 5 1269.354 -0.146 100
7 308.336 3.01 -4.093 1 5 1268.637 -0.145 100
8 279.295 2.89 -3.821 1 4 1317.404 -0.049 100
9 325.32 2.825 -3.792 1 5.5 1315.075 -0.191 100

10 325.32 2.769 -3.717 1 5.5 1316.437 -0.185 100
11 325.32 2.807 -3.777 1 5.5 1286.253 -0.198 100
12 325.32 2.805 -3.788 1 5.5 1286.858 -0.2 100
13 309.278 2.147 -2.866 1 5.5 1318.93 -0.008 100
14 355.346 2.916 -3.854 1 6.25 1315.484 -0.255 100
15 355.346 2.974 -3.759 1 6.25 1454.597 -0.205 100
16 283.258 2.764 -3.528 1 4 1974.243 0.044 100
17 299.713 3.007 -3.843 1 4 2675.813 0.1 100
18 264.326 3.469 -4.531 1 3.5 1263.948 -0.167 100
19 264.326 3.469 -4.548 1 3.5 1264.67 -0.169 100
20 251.284 3.134 -3.9 1 3.25 1311.242 -0.13 100
21 311.337 3.402 -4.379 1 4.75 1310.877 -0.28 100
22 281.31 3.224 -4.164 1 4 1317.393 -0.209 100
23 324.379 3.69 -5 1 5 1268.723 -0.323 100
24 311.337 3.21 -4.32 1 4.75 1316.16 -0.285 100
25 341.363 3.483 -4.726 1 5.5 1315.351 -0.368 100
26 281.31 3.232 -4.148 1 4 1314.823 -0.207 100
27 267.284 2.389 -3.639 2 4 361.845 -0.696 92.377
28 285.729 3.626 -4.651 1 3.25 3237.059 0.03 100
29 269.275 3.369 -4.278 1 3.25 2372.422 -0.022 100
30 296.368 3.452 -4.92 1 4.75 1375.09 -0.147 100
31 283.326 3.202 -4.708 1 4.5 1419.711 -0.131 100
32 254.245 2.097 -3.159 2 4 819.64 -0.121 96.549
33 255.229 2.039 -2.795 1 4.5 1307.408 0.048 100
34 271.29 2.485 -3.481 1 4 2253.017 0.144 100
35 304.304 2.314 -3.599 1 5.5 742.965 -0.188 100
36 240.236 2.686 -3.616 1 3.5 1752.407 -0.057 100
37 240.236 2.664 -3.517 1 3.5 1671.003 -0.046 100
38 252.272 2.55 -3.488 1 4.25 971.336 -0.243 100
39 256.691 2.94 -3.979 1 3.5 2390.265 -0.007 100
40 291.306 3.202 -3.957 1 4 1092.269 -0.262 100
41 291.306 2.956 -3.808 1 4 1696.925 0.121 100
42 321.332 3.052 -4.037 1 4.75 1697.221 0.045 100
43 305.332 3.251 -4.148 1 4 1829.567 0.144 100
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Visualization of the 3D-QSAR model gives the
details about relationship between structure and
the design activity among these molecules and
thus provides precise indications about better
analogues. Furthermore, the activity-based cubes
generated, using 3D-QSAR model along with
finally obtained pharmacophoric features,
strongly communicates picture of probable active
site of the target and can be used as a constructive
tool for the rational drug design process. The
results of this study are expected to be beneficial
for balanced modification of ligands as potential
tubulin polymerization inhibitors with good
antitumor activity, which can be attained by
incorporating predicted structural features to the
molecule.

Docking studies were carried out and also
correlated with CPHs, which indicated that all
compounds bind in similar pose at colchicine
binding site of β tubulin. Docking studies
provides clear indication about the hydrogen

binding of compounds with CYS 241. Subsequent
ADME studies disclosed the pharmacokinetic
efficiency of these compounds. In conclusion, the
overall study provides comprehensive structure
and vital binding information of 4-Quinolones
derivatives as tubulin binding agents for
antitumor activity. Further research studies are
under process for complete optimization of
various physical descriptors especially Apparent
MDCK cell permeability for obtaining 4-
quinolones based analogues with promising
tubulin polymerization inhibitory activity.
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